Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection
English | PDF,EPUB | 2012 | 279 Pages | ISBN : 3642311636 | 8.93 MB
Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases.
Peter Christen's book is divided into three parts: Part I, "Overview", introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, "Steps of the Data Matching Process", then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, "Further Topics", deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today.
By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.
Download:
http://longfiles.com/rfdh3hwx68rx/Data_Matching_Concepts_and_Techniques_for_Record_Linkage,_Entity_Resolution,_and_Duplicate_Detection.rar.html
MySQL and JSON: A Practical Programming Guide
Web Information Retrieval
Data Management : A Practical Guide for Librarians
Hands-On Database, 2nd Edition
SQL for Exploratory Data Analysis Essential Training
SQL: Access to SQL Server
Statistics for Machine Learning
MySQL Administrator's Bible
Microsoft SQL Server 2005 Express Edition For Dummies
OCA Oracle Database 11g Administration I Exam Guide (Exam 1Z0-052)
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.
Learn Data Analysis with Python: Lessons i(3425)
Advanced Data Analytics Using Python: With(2962)
Python Machine Learning By Example: The ea(2731)
Data Science and Analytics with Python(2625)
Big Data : Concepts, Methodologies, Tools,(2584)
Python Data Analysis(2436)
Artificial Intelligence and Big Data: The (2374)
Introduction to Deep Learning: From Logica(2290)
A Practical Guide to Database Design, Seco(2079)
PHP, MySQL, & JavaScript All-in-One For Du(2014)
Practical SQL: A Beginner's Guide to Story(1963)
Web Scraping with Python, 2e(1960)
R Data Mining(1950)
R: Data Analysis and Visualization(1939)
R Data Analysis Projects: Build end to end(1919)
